Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of frequency stabilized laser system for long-lived isotope analysis, 3; Computer-based laser frequency tuning system

Miyabe, Masabumi; Oba, Masaki; Kato, Masaaki; Wakaida, Ikuo; Watanabe, Kazuo

JAERI-Tech 2005-043, 27 Pages, 2005/08

JAERI-Tech-2005-043.pdf:2.51MB

Multi-step resonance ionization spectrometry for long-lived nuclei in nuclear waste materials requires laser sources having high frequency stability and tunability. In this study we have developed a novel frequency control system consisting of digital circuitry and computer to improve the frequency tunability of the developed laser stabilization system using dichroic atomic vapor laser lock (DAVLL) and fringe offset lock (FOL) techniques. Based on the heterodyne experiment and multi-step laser induced fluorescence spectroscopy of atomic Ca, the frequency stability and tunability of the developed system were evaluated.

JAEA Reports

Development of frequency stabilized laser system for long-lived isotope analysis, 1; Development of Littrow configuration extended cavity diode laser

Miyabe, Masabumi; Oda, Koichi*; Oba, Masaki; Kato, Masaaki; Wakaida, Ikuo; Watanabe, Kazuo

JAERI-Tech 2004-064, 33 Pages, 2004/10

JAERI-Tech-2004-064.pdf:1.89MB

In nuclear waste materials there are various radionuclides to which standard analytical techniques are difficult to be applied. We are developing an analytical technique where such nuclides are analyzed using multi-step resonance ionization mass spectrometry. In this study, we have developed an external cavity diode laser applicable to the analysis. The wavelength and output power dependence on injection current and temperature were investigated for various types of laser diodes. Based on the data, we have obtained a suitable condition to operate the ECDL in stable single-mode oscillation, so that a continuous scanning range of about 100 GHz was realized. Additionaly, to evaluate the bandwidth of the developed ECDL, we have performed Doppler-free spectroscopy. The reasonable agreement of the measured isotope shift and HFS splitting with the reported values demonstrated that the developed ECDL is applicable to a precise laser spectroscopy as well as a laser trace analysis.

2 (Records 1-2 displayed on this page)
  • 1